Клетки являются основными функциональными единицами жизни. Независимо от формы организма (одноклеточные или многоклеточные), все живые существа зависят от нормального функционирования клеток. По оценкам ученых, наши тела содержат от 75 до 100 триллионов клеток. Кроме того, в теле есть сотни различных типов клеток. Они делают все, от поддержки структуры и стабильности до обеспечения энергией и размножения.

Следующие 10 фактов о клетках помогут вам лучше понять роль этих микроскопических, но очень важных составляющих любого живого организма на Земле.

1. Клетки слишком малы, чтобы их можно было увидеть без увеличения

Клетки имеют размер от 1 до 100 мкм. Изучение клеток, также называемое клеточной биологией, было бы невозможно без изобретения микроскопа. С помощью современных микроскопов, биологи могут получать подробные изображения наименьшей из клеточных структур.

2. Существует два основных типа клеток

Эукариотические и прокариотические клетки являются двумя основными типами клеток. Эукариотические клетки получили свое название из-за наличия истинного ядра, которое заключено в мембрану. Животные, растения, грибы и протисты являются примерами организмов, которые состоят из эукариотических клеток. Прокариотические организмы включают бактерий и археи. Ядро прокариотических клеток не заключено в мембрану.

3. Прокариотические одноклеточные организмы были самыми ранними и примитивными формами жизни на Земле

Прокариоты могут жить в средах, которые были бы смертельными для большинства других существ. Эти экстремофилы способны обитать и процветать в самых разных средах.

Например, археи живут в таких местах, как гидротермальные жерла, горячие источники, болота, водно-болотные угодья и даже кишечниках животных.

4. В организме больше бактериальных клеток, чем человеческих

Ученые подсчитали, что около 95% всех клеток в организме являются бактериями. Подавляющее большинство этих микробов можно найти в дизъюнктивном тракте. Миллионы бактерий также живут на коже.

5. Клетки содержат генетический материал

Клетки содержат ДНК (дезоксирибонуклеиновую кислоту) и РНК (рибонуклеиновую кислоту), генетическую информацию, необходимую для направления клеточной активности. ДНК и РНК представляют собой молекулы, известные как нуклеиновые кислоты. В прокариотических клетках единственная молекула бактериальной ДНК не отделена от остальной части клетки, а свернута в области цитоплазмы, называемой нуклеотидной областью.

В эукариотических клетках молекулы ДНК расположены внутри ядра клетки. ДНК и белки являются основными компонентами хромосом. Человеческие клетки содержат 23 пары хромосом (всего 46). Есть 22 пары аутосом (неполовые хромосомы) и одна пара гоносом (половые хромосомы). Половые хромосомы X и Y определяют пол.

6. Клетки содержат структуры, называемые органеллами, выполняющими определенные функции

Органеллы имеют широкий круг обязанностей внутри клетки, которые включает в себя все: от обеспечения энергией до производства гормонов и ферментов.

Эукариотические клетки содержат множество типов органелл, в то время как прокариотические клетки включают несколько органелл (рибосомы), которые не связаны мембраной. Существуют также различия между видами органелл, обнаруженными в разных типах эукариотических клеток. Например, клетки растений содержат такие структуры, как клеточная стенка и хлоропласты, которые не встречаются в клетках животных. Другие примеры органелл включают:

  • Ядро — контролирует рост и размножение клеток.
  • Митохондрии — обеспечивают энергию для клетки.
  • Эндоплазматический ретикулум — синтезирует углеводы и липиды.
  • Комплекс Гольджи — производит, хранит и выводит определенные вещества в клетке.
  • Рибосомы — участвуют в синтезе белка.
  • Лизосомы — переваривают клеточные макромолекулы.

7. Различные типы клеток делятся с помощью разных методов

Большинство прокариотических клеток реплицируются с помощью процесса, называемого бинарным делением. Это тип процесса клонирования, в котором две идентичные ячейки образуются из одной. Эукариотические клетки способны воспроизводится бесполым способом через митоз. Кроме того, некоторые эукариоты склоны к половому размножению, которое связано с слиянием половых клеток или гамет. Гаметы производятся с помощью процесса, называемого мейозом.

8. Группы подобных клеток образуют ткани

Ткани — это группы клеток с общей структурой и функцией. Типы клеток, которые составляют ткани животных, иногда сплетены вместе внеклеточными волокнами, либо удерживаются липким веществом, покрывающим их. Различные типы тканей также могут быть расположены вместе для образования органов. Группы органов, в свою очередь, формируют системы органов.

9. Клетки имеют различную продолжительность жизни

Клетки внутри человеческого тела имеют разные жизненные промежутки, основанные на их типе и функции. Они могут жить от нескольких дней до года. Некоторые клетки пищеварительного тракта живут всего несколько дней, в то время как клетки иммунной системы способны жить до шести недель. Поджелудочные клетки имеют продолжительность жизни до года.

Интересные факты о клетках человеческого организма

1. Организм человека состоит из 220 миллиардов клеток, которые подразделяются на 200 обособленных групп. Но четко различаются две категории:

  • 20 миллиардов «бессмертных», главным образом нервных клеток (нейронов), образующих нервные ткани и существующих на протяжении всей человеческой жизни;
  • 200 миллиардов «смертных», которые постоянно замещаются.

2. Продолжительность существования клеток:

  • кишечника — 5 дней;
  • эритроцитов — 120 дней;
  • печени — 480 дней;
  • нейронов — 100 лет и более;
  • мышечных тканей — 100 лет и более.

3. У человека каждые 27 дней вырастают новые внешние клетки. Речь идет о коже, которая защищает внутренние органы от внешних воздействий, постоянно сохраняя свою прочность за счет обновления клеток.

Интересные факты о растительных клетках

  1. Мимоза стыдливая получила такое название благодаря резкому понижению давления в клетках при взаимодействии с любым внешним раздражителем, из-за чего лепестки растения сворачиваются. Такая реакция происходит из-за оттока воды при выделении химических веществ.
  2. Китайская крапива обладает прочнейшими клетками волокон. Подтверждением выступает экспериментально доказанный факт: прочность растения на разрыв волокон в среднем составляет 95 килограмм на 1 миллиметр.
  3. Жалящее действие крапивы обеспечивается наличием на ее стеблях стрекательных клеток. Механизм действия такой: когда человек прикасается к растению, конец клетки впивается в кожу и выпускает свое содержимое (витамин В4, муравьиную кислоту и гистамин).

Строение стрекательных клеток

В этой статье рассмотрена лишь обобщенная информация о строении растительных и животных клеток. На практике же видно, насколько уникальны составляющие всех живых элементов природы, будь то строение клеток бактерий, грибов или обыкновенного лука. Только при изучении биологии, с помощью теоретического и практического подходов, можно создать комплексную картину структуры всех живых организмов на Земле.

10. Клетки совершают самоубийство

Когда клетка становится поврежденной или подвергается какой-либо инфекции, она сама разрушается процессом, называемым апоптозом. Апоптоз работает, чтобы обеспечить надлежащее развитие и контролировать естественный процесс митоза организма. Неспособность клетки претерпеть апоптоз может привести к развитию рака.

Не нашли, то что искали? Используйте форму поиска по сайту

Человеческий организм полностью наполнен клетками, выполняющими различные функции, для поддержания его жизнедеятельности. Ученые их на постоянной основе исследуют, и получают какие-то новые необычные данные.

Для примера, ранее всегда было принято считать, что нет возможности восстановления для нервных клеток. И вообще, в принципе, мозговая деятельность человека начинает после 45 лет ухудшаться. Но по последним результатам проведенных исследований, оказалось все наоборот. И эти показатели могут положительно повлиять на развитие науки, в целом. И возможно, создадут перспективы для лечения многих болезней.

Как выяснили ученые, у новорожденных детей мозговой аппарат может вмещать до 14 миллиардов клеток. А примерно с 25 лет, у каждого человека, ежедневно снижается их количество, ориентировочно на 100 тысяч. Интересным фактом также является то, что за минуту гибнет около 70 клеток.

Во взрослом организме находятся уже сотни триллионов клеток. Казалось бы, на первый взгляд, это очень большой показатель. Но дело все в том, что только одна десятая от этого числа являются действующими живыми клетками. Оставшуюся часть ученые выделяют как микробы.

По своему строению, клетка человеческого тела — это маленькая частица, которая имеет свойство размножаться, и взаимодействует с подобными ей небольшими организмами. И именно благодаря этому процессу, жизнь человеческая продолжает существовать, происходит образование тканей, необходимых для полной сформированности органов.

Изначально, с рождения, каждому человеку с запасом закладывается большое количество клеток. Природные ресурсы, получается у каждого неисчерпаемы, гигантское число нейронов способно сотворить чудо. Но дело в том, что при взаимодействии, образуются множественные связующие процессы, и активными остаются лишь те, которые закреплены в обучающем процессе. Именно они становятся главными для образования межклеточных связей. Далее в организме наступает время для очистки от ненужных нейронов, которые не участвуют в процессе обработки информационных данных.

А происходит этот процесс для того, чтобы человеческому организму не было так тяжело. Ведь даже находясь в активном отдыхе, у человека клетки забирают энергию. Поэтому, необратимый процесс никоим образом не приостановить. Этот процесс очистки необходим для самого человека, потому что живые клетки после этого этапа начинают активнее развиваться, и создавать большее количество связей.

Осмосом называют прохождение воды через избирательно проницаемую мембрану, в частности через клеточную мембрану. В случае клеточной мембраны осмос частично обусловлен диффузией отдельных молекул воды сквозь эту мембрану, а частично — током воды через особые поры в мембране. Поскольку концентрация всякого водного раствора зависит от количества растворенного в воде вещества, вода стремится переходить из более разбавленного раствора (где концентрация воды выше) в более концентрированный (где концентрация воды соответственно ниже).

Осмотическое движение воды зависит от двух главных факторов:

  • от общей концентрации всех растворенных в воде частиц по обе стороны мембраны и
  • от давления, создаваемого каждым раствором.

При прочих равных условиях вода стремится переходить через избирательно проницаемую мембрану от менее концентрированного раствора к раствору с более высокой общей концентрацией всех растворенных частиц (рис.1. ).

Рис. 1. Осмос в искусственной системе. Трубку, содержащую раствор глюкозы и закрытую с одного конца мембраной, пропускающей воду, но не пропускающей глюкозу, опускают закрытым концом в сосуд с водой. Вода может проходить через мембрану в том и в другом направлении; однако молекулы глюкозы в трубке мешают движению соседних молекул воды, и потому больше воды входит в трубку, чем выходит из нее. Раствор поднимается в трубке до тех пор, пока давление его столба не станет достаточным для того, чтобы вытеснять воду из трубки с такой же скоростью, с какой она поступает внутрь.

Однако при этом в какой-то момент вода, поступившая в более концентрированный раствор, может развить такое давление, что это давление будет вытеснять ее наружу с такой же скоростью, с какой она поступает внутрь.

Не обладая способностью насасывать или откачивать воду непосредственно, клетки регулируют приток и отток воды, изменяя концентрацию находящихся в них растворенных веществ. Чтобы поглотить больше воды, клетка поглощает больше ионов различных солей, молекул глюкозы или других растворимых соединений. В результате в клетке повышается концентрация растворенных частиц. Вода по законам осмоса начинает поступать в клетку, стремясь к выравниванию своей собственной концентрации по обе стороны мембраны.

Так работает эта система до тех пор, пока концентрация растворенных веществ вне клетки и в клетке примерно одинакова. А что происходит, когда концентрация внутри и вне клетки очень сильно разнится? Если в среде концентрация растворенных веществ выше, чем в самой клетке, или если средой для клетки служит практически сухой воздух, то клетка теряет воду и сморщивается, как это бывает, когда растения привядают в сухой жаркий день. С оттоком воды содержимое клетки сжимается и отходит от клеточных стенок (рис. 2).

Рис. 2. Тургор и завядание у растений.
А. Растительные клетки, окруженные разбавленным раствором, поглощают воду путем осмоса через клеточную мембрану и остаются тургесцентными.
Б. Растительные клетки, окруженные концентрированным раствором, теряют воду вследствие осмоса, и растение завядает.

Если, однако, увядшее растение поместить в воду, то вода вновь поступает в клетки. Они становятся тургесцентными, т.е. набухают от воды и снова прижимаются к клеточным стенкам, подчиняясь тургорному давлению, направленному изнутри наружу. Клеточные стенки способны растягиваться лишь до известного предела, после которого они начинают оказывать противодавление, вытесняющее воду из клеток с такой же скоростью, с какой она в них поступает. Таким способом клеточные стенки защищают клетки: не дают им лопнуть под напором избытка воды.

Многие животные клетки, если поместить их в чистую воду или в очень разбавленный раствор, лопаются, потому что у них нет клеточных стенок (рис. 3).

Рис. 3. Осмос в животной клетке.
А. Животная клетка в разбавленном растворе поглощает воду до тех пор, пока не лопнет
Б. Животная клетка в концентрированном растворе теряет воду и сморщивается

Во избежание этого лекарственные препараты, предназначенные для внутривенного введения, готовят не на чистой воде, а на специальных солевых растворах. Животные клетки, соприкасающиеся с водой постоянно, например клетки, выстилающие желудочно-кишечный тракт человека, обладают приспособлениями, которые не дают им поглощать слишком много воды. Когда мы пьем воду, она всасывается и распределяется постепенно; именно поэтому клетки в нашем организме и не лопаются.

Логика пути

Пожалуй, ни одна биологическая структура не привлекла к себе столь пристального внимания ученых, как ядро клетки и хромосомы. Уже более ста лет (клеточное ядро было открыто в 1835 году Робертом Брауном) идет непрерывный штурм этой микроскопической крепости. Сейчас проблемой занимаются тысячи ученых самых различных специальностей: цитологи, генетики, вирусологи, физико-химики, биохимики, математики.

Какие же факты заставляют ученых именно в клеточном ядре и хромосомах искать механизмы наследственной передачи?

Прежде всего некоторые общие закономерности развития организмов, которые уже сравнительно давно удалось выявить биологам.

Ближайшие потомки всегда в той или иной степени похожи на своих предков. Во всяком случае, потомство всегда повторяет основные черты строения родителей. Это так привычно, что часто даже не вызывает вопроса: почему? Причиной такого сходства является наследственность. Что же такое наследственность? Как протекает процесс передачи наследственных признаков от отцов и матерей к детям? Какие структуры в клетках организмов являются носителями индивидуальных признаков всякого существа? Или, другими словами, каковы материальные, вещественные основы наследственности? Ответить на эти вопросы стало возможным лишь после того, как были установлены основные положения клеточной теории строения организмов, а главное, изучено строение самих клеток, этих микроскопических «единиц жизни».

Сходство детей с родителями является едва ли не самой общей биологической закономерностью. Все живые существа — от примитивнейшего вируса до человека — обладают способностью передавать потомкам по наследству основные черты своего строения. Вот эта способность воспроизводить себя в потомках и называется наследственностью.

Следует сказать, что понятие наследственности применимо не только к целостным организмам. Наследственностью обладает и каждая отдельная клетка организма.

Известно, например, что в процессе жизни организма мышечные клетки делятся и количество их увеличивается, но мышца остается мышцей. Это значит, что каждая клетка при делении производит новую клетку, как правило похожую на себя, себе подобную.

Однако, если способность живых организмов повторять свои наследственные особенности в поколениях — одна из самых общих закономерностей живой природы, то не менее общей Закономерностью является и их способность изменяться.

Изменчивость и наследственность представляют собой как бы две стороны одного явления. В природе идет постоянный процесс передачи наследственных свойств от родителей к детям и так же постоянно идет процесс изменчивости. Ведь дети никогда не представляют собой абсолютных копий родителей.

Биологическая дисциплина, занимающаяся явлениями наследственности и изучением законов, управляющих сходствами и различиями между родственными органами, называется генетикой.

Итак, развитие каждого организма, как бы сложно он ни был построен, всегда начинается с клетки. Клетка, дающая начало каждому сложному организму, называется яйцом, или яйцеклеткой. Яйцеклетки вырабатываются в теле женской особи. Но чтобы яйцо начало развиваться, необходимо оплодотворение его другой половой клеткой — мужской.

В результате слияния женской и мужской половых клеток (яйцеклетки и сперматозоида) образуется одна новая клетка — оплодотворенное яйцо, или, как его еще называют, зигота. Из нее путем многочисленных делений развивается сложный организм, состоящий иногда из многих миллиардов клеток, составляющих его ткани и органы.

Таким образом, преемственность, связь между различными поколениями организмов, осуществляется через одну клетку. И поскольку из этой клетки, как правило, развивается организм, имеющий черты сходства с родителями, естественно сделать вывод, что основные черты строения будущего организма заложены уже в зиготе и половых клетках, в результате слияния которых она образовалась. К такому пониманию биологическая наука пришла давно.

Но это только общее, хотя и правильное, заключение. Оно ведь не может объяснить, как, в виде каких материальных структур качества и признаки родителей заложены в половых клетках. И пока наука не была вооружена микроскопической техникой, ученые серьезно полагали, что в половых клетках уже в готовом виде присутствует миниатюрный организм с зачатками всех будущих органов, а поэтому развитие — лишь рост этих зачатков. Спорили лишь о том, где помещается этот микроскопический организмик — в яйцеклетке или сперматозоиде. Когда же для изучения половых клеток применили сильные микроскопы, спор решился сам собой — обе стороны были не правы.

Оказалось, что по своему строению половые клетки в принципе не отличаются от других клеток тела. Никакого маленького организмика, который потом должен вырасти, в них нет. Они, как почти все клетки, имеют оболочку, протоплазму, ядро.

Какая же часть клетки играет основную роль в передаче наследственных признаков от материнской клетки к дочерней, от родителей к детям: ядро или протоплазма? Этот вопрос давно волновал ученых.

В настоящее время, когда процесс деления клеток у различных видов животных и растений детально изучен, можно считать общепризнанным, что в большинстве случаев ведущую роль в передаче наследственных признаков играет именно клеточное ядро.

О роли ядра можно судить по тем последствиям, которые влечет за собой удаление его из клетки или пересадка ядра из одной клетки в другую.

При современной технике микрохирургии такие операции вполне доступны. Можно проделать, например, следующую операцию. Взять амебу и при помощи стеклянной иглы разрезать на две части: безъядерную и содержащую ядро.

Теперь, наблюдая за поведением полученных частей, мы увидим такую картину. Безъядерная часть некоторое время двигается, но вскоре округляется, становится нечувствительной к воздействиям внешней среды и гибнет. Та же, где осталось ядро, нормально реагирует на внешние раздражители, двигается, поглощает пищу и вовремя делится. Итак, протоплазма без ядра существовать не может.

Но здесь возможны и возражения. Дескать, это все равно, что отрезать кому-то ногу и ожидать, что она будет самостоятельно жить. Но вот другой опыт. При помощи микроскопического стеклянного кружочка из амебы удаляется ядро. Амеба сейчас же округляется и начинает вести себя, как безъядерная часть в предыдущем опыте. Однако, если осторожно ввести ядро обратно, нормальная жизнедеятельность амебы восстанавливается. Здесь уже совершенно четко видно, что изолированная протоплазма нежизнеспособна и что ее жизнедеятельность каким-то образом вызывается и регулируется ядром.

Опыты по пересадке ядра в некоторых случаях помогают также установить, на какие функции клетки оно влияет. Таковы, например, опыты, проделанные на водорослях ацетобуляриях. Каждая из этих водорослей, хотя и имеет подошву, стебелек и шапочку, представляет собой всего одну клетку. Шапочка у этих водорослей восстанавливается заново, если ее удалить механическим путем, допустим, оборвать. Кроме того, форма шапочки является характерной для каждого вида ацетобулярий.

Водоросли эти довольно велики для одноклеточных и достигают шести сантиметров.

Итак, у водоросли одного вида удаляли шапочку, и, до того как она успеет регенерировать (восстановиться), в эту водоросль пересаживали ядро, взятое от ацетобулярии другого вида. Теперь легко наблюдать интересное явление: восстановившаяся заново шапочка имела форму, среднюю для этих двух видов.

Мало того, если водоросли с удаленной шапочкой пересаживали не одно, а несколько ядер другого вида, то ее новая шапочка становилась больше похожей на шапочки тех водорослей, от которых брали ядра, чем на шапочки своего вида.

Совершенно очевидным образом клеточное ядро влияло на процессы формообразования. Но ведь форма шапочки — признак наследственный, характерный для каждого вида ацетобулярий!

Вопрос о том, какая же часть клетки (ядро или протоплазма) играет основную роль в передаче наследственных признаков от материнской клетки к дочерней, от родителей к детям, явился предметом многих споров и дискуссий в самом недавнем прошлом. Сейчас мало у кого вызывает сомнение, что такая роль принадлежит именно ядру.

Особенно это становится ясным, если познакомиться со строением ядра и его поведением в процессе деления клетки.

Если поместить под микроскоп живую клетку и попытаться рассмотреть структуру ее ядра, то в большинстве случаев такая попытка окажется безуспешной.

Во многих живых клетках часто невозможно различить не только внутреннее строение ядра, но и само ядро. Чтобы ядро стало ясно видно и доступно изучению, клетки обрабатывают специальными красками, которые впитываются веществом ядра гораздо лучше, чем цитоплазмой.

Теперь на окрашенном препарате можно различить нежную ядерную оболочку, а в самом ядре одно или несколько крошечных телец, так называемых ядрышек. Но этого мало. Все ядро оказывается пронизанным пересекающимися по разным направлениям и переплетающимися нитями, зернами и глыбками. Это ядерная сеть. Она очень хорошо красится ядерными красками, и поэтому получила название «хроматина» (от греческого «хрома» — цвет). Все остальное пространство в ядре заполнено вязкой жидкостью — ядерным соком.

Таково вкратце строение «покоящегося» ядра, когда клетка не делится.

Но вот клетка начинает делиться, и весь ядерный аппарат приходит в движение. Ядро увеличивается в размерах и становится почти шарообразным, если в покоящейся клетке его форма была иной. Количество хроматина в ядре быстро нарастает. Отдельные хроматиновые зерна слипаются друг с другом, образуя нить, свернутую в тугой клубок. Но процесс идет дальше. Постепенно плотный клубок хроматиновой нити делается рыхлым, а сама нить становится короче и толще. Это уже не нить, а лента. Проходит еще некоторое время, и лента хроматина распадается, дробится на отдельные участки всегда определенного количества. Образующиеся таким путем куски хроматиновой ленты получили название хромосом. «Хрома», как вы помните, по-гречески — цвет; «сома» — тело. Хромосома — красящееся тельце. Ничего больше, кроме обозначения реально существующих и возникающих в ходе деления клетки отдельных участков хроматиновой ленты, это слово не значит. Однако запомните его хорошенько, ибо очень многое как в судьбе отдельной клетки, так и в судьбе сложнейших многоклеточных организмов связано именно с хромосомами.

Но вернемся к процессу деления клетки.

Обычно для его изучения используются, так сказать, «мертвые», окрашенные препараты. Однако современная техника микроскопирования и киносъемок позволяет в некоторых случаях наблюдать и деление живой клетки. Несколько лет назад мне довелось присутствовать на демонстрации одного из первых фильмов такого рода.

…Клетка жила на экране. Ее цитоплазма мягко колыхалась, переливаясь и мерцая возникающими и пропадающими бликами гранул и вакуолей. Ядро выглядело то более светлым, то вдруг начинало темнеть. Иногда оно как будто вздрагивало. Его строение ни на минуту не оставалось постоянным: шел процесс образования хромосом, шла полная реконструкция ядра. Вот вдруг исчезло ядрышко. Затем, совершенно неожиданно для наблюдателей, пропала и ядерная оболочка. Ядра как такового уже не стало: ядерный сок смешался с цитоплазмой. И весь вид клетки стал иным. Там, где когда-то было ядро, теперь лежали хромосомы. Они располагались почти правильной звездой, напоминая одну из фигур хоровода «Березка».

Зал замер. И, хотя здесь собрались цитологи, люди, просмотревшие под микроскопом не одну тысячу препаратов, все глядели на экран с напряженным вниманием. Наступал самый существенный и замечательный момент — деление ядра. На глазах у всех должно было произойти чудо, на котором природой основано существование всего живого. И оно произошло. Изображение вдруг дрогнуло, и хромосом стало вдвое больше. Из одной звезды образовались две, наложенные друг на друга. Каждая хромосома расщепилась вдоль строго пополам, и теперь на ее месте лежали две дочерние хромосомы, абсолютно похожие друг на друга и на свою прародительницу. Так все хромосомы клетки воспроизвели самих себя.

Но картина двух «звезд» держалась недолго. Вначале незаметно, а потом все быстрее и быстрее хромосомы начали расходиться к противоположным полюсам клетки. Пары хоровода распались, дочерние хромосомы неотвратимо удалялись друг от друга. Клетка делила свое наследство. Происходило это все удивительно четко. Как будто на двух половинах экрана показывали из двух аппаратов один и тот же фильм. И в левой и в правой сторонах клетки хромосомы совершали одинаковые движения. Но вот, наконец, они остановились, собравшись в кучку у противоположных полюсов клетки. Здесь между хромосомами начали образовываться соединения и перемычки. Хромосомы теряли свою индивидуальность, складываясь в хроматиновые ленты, свернутые в клубок. Затем каждый из клубочков оделся нежной ядерной оболочкой. Так в результате сложных превращений из одного материнского ядра образовались два новых.

Параллельно с делением ядра протоплазматическое тело клетки также подвергалось изменениям. В момент расхождения хромосом к полюсам клетки на ней по экватору появились перетяжки (бороздки). Они все больше и больше углублялись в тело клетки, и в конечном итоге она оказалась расчлененной пополам. Процесс деления клетки завершился. Теперь вместо одной материнской клетки на экране были две новые. Каждая из них жила своей жизнью. И в каждой ритмично пульсировало свое ядро.

Дочерние клетки, как правило, очень похожи друг на друга, а также на ту исходную, из которой они произошли. И, наблюдая процесс деления клетки, легко понять, откуда возникает такое сходство. Ведь весь механизм деления был направлен именно на то, чтобы вещество материнской клетки распределилось между дочерними как можно более точно. И особенно это относится к веществу ядра, к его хроматиновой части. Вспомним, -как распределялся хроматин. Хроматиновая лента распалась на сегменты — хромосомы; хромосомы расщепились вдоль на половинки, из которых и образовались новые ядра. Таким образом, количество хроматина было разделено предельно точно. И что особенно важно подчеркнуть, произошло не только точное распределение хроматина по количеству, но он оказался также точно распределенным и качественно. Ведь вновь образовавшиеся хромосомы (половинки) расходились всегда в противоположные стороны.

На основании изучения механизма деления клеток и Роли хромосом в равномерном распределении ядерного вещества в биологии возникло представление, что именно через хромосомы и происходит передача наследственных признаков от клетки к клетке. Такое представление получило название хромосомной теории наследственности.


Выдача хромосом

Давайте посмотрим, на какие же еще факты опирается эта теория. А факты интересные. Так, изучение количества хромосом в клетках различных животных и растительных органов выявило удивительную закономерность. Выяснилось, что в каждой клетке (любого организма данного вида) содержится строго определенное число хромосом, характерное для данного вида. Например, в клетках тела кролика всегда присутствуют 44 хромосомы. У кошки их 36, у лошади — 60. Твердые пшеницы имеют 28 хромосом, мягкие — 42 хромосомы, а у кукурузы их 20.

Но числовой разброс велик. И вот границы. У одного из видов круглых червей в клетках тела имеется всего лишь 2 хромосомы, в то время как у микроскопического морского животного радиолярии их около 1600. Таким образом, число хромосом в клетках тела характерно для каждого вида животных и растений. На этом основании утвердилось правило, что все особи внутри каждого вида должны иметь одинаковое число хромосом. Это положение получило название «закона постоянства числа хромосом».

Число хромосом в клетках тела человека равно 46. Такое число хромосом содержат все клетки тела человека, независимо от того, идет ли речь о Клетках сердца или печени, пальца или легкого. Почему? На этом стоит остановиться подробнее.

Под микроскопом легко видеть, что присутствующие в клетках хромосомы далеко не одинаковы. Они отличаются друг от друга по длине, форме, наличию утолщений или перетяжек и т. д. Каждая хромосома имеет как бы свое лицо. Однако, присмотревшись внимательно, можно найти и «лица», похожие друг на друга. Еще внимательнее: и вы видите, что таких похожих не больше двух. Пары! Да, в каждой клетке нашего тела не просто 46 хромосом, а 23 различные пары. Как бы двойной набор одного определенного ассортимента. Такой двойной набор хромосом называется диплоидным, а отсюда и содержащие его клетки диплоидными. Все клетки нашего тела диплоидны. Исключение составляют только зрелые половые клетки, или гаметы (яйцеклетки и сперматозоиды), в которых содержится не двойной, а одинарный, или гаплоидный, набор хромосом (у человека 23 хромосомы).

В чем же смысл такой, всегда двукратной, разницы в количестве хромосом между воспроизводящими (половыми) и телесными клетками?

Давайте рассуждать. Как вы помните, развитие любого организма начинается с одной клетки — зиготы. Образуется зигота в результате слияния двух клеток: мужской и женской. И каждая из них привносит в зиготу свой (одинарный) гаплоидный набор хромосом.

Уже в первичной клетке, из которой впоследствии разовьётся новый организм, наследственные признаки родителей представлены на равных началах. Зигота имеет уже двойной (диплоидный) набор хромосом, который и будет воспроизведен во всех клетках тела при последующем росте и развитии. Следовательно, биологический смысл присутствия в клетках тела всегда двойного набора хромосом заключается в том, чтобы представить в потомстве наследственность обоих родителей.

Итак, детальное изучение процесса деления клетки приводило к выводу, что передача наследственных признаков и свойств исходной клетки связана с распределением вещества ее ядра между клетками дочерними. Было бесспорно установлено, что важнейшими структурами, обеспечивающими необходимую точность такого распределения, являются хромосомы.

И естественно, следующим логическим шагом было выяснение химического состава хромосом. Оказалось, что они построены главным образом из двух химических соединений: белка и нуклеиновой кислоты. Оба эти органические соединения представляют собой гигантские молекулы с огромными (миллионными) атомными весами.

Итак, по химическому строению хромосомы — нуклеопротеиды, соединение белка с нуклеиновой кислотой.


Генетика

Но какое из этих веществ ответственно за передачу наследственных признаков? Белок или нуклеиновая кислота? А может, оба вместе? И наконец, каким образом на микроскопически маленьких образованиях, хромосомах, «записано» огромное число «сведений» о чертах строения будущего взрослого организма или пусть даже отдельной клетки?

Загадка казалась неразрешимой. Решить ее одной генетике (науке о наследственности) было не под силу. Здесь нужны разносторонний, комплексный подход, усилия ученых многих специальностей. И особенно это было необходимо по отношению к нуклеиновой кислоте. Биологическая роль и строение белков во многом не представляли секрета. А что можно сказать о нуклеиновых кислотах?

Интересные факты о клетке

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *